A】4~口

Station Description

16 Jan 2022
www.aj4co.org

Dave Typinski

CONTENTS

Observatory Outline 1
TFD Array Schematic 4
TFD Array Feed Losses 5
TFD Array Element S_{11} and Pattern 6
Antenna Test Range Feed Schematic 7
RF Surge Suppressors 8
Antenna Feed Control 9
Receivers 10
Calibration Temperatures 11
Power Distribution 13
Ethernet Diagram 14
TFD Array Beam Steering 15
Terrestrial Beam Heading Map 21
Magnetic Declination 22
Facility Layout 23
Location Within North America 24

ロBSERVATGRY

26211 W US Hwy 27
PO Box 2423
High Springs, FL 32655 (386)344-3166

OBSERVATORY OUTLINE

Location

$29^{\circ} 50^{\prime} 13^{\prime \prime} \mathrm{N}$	$29.8369^{\circ} \mathrm{N}$	EL89qu
$82^{\circ} 37^{\prime} 17^{\prime \prime} \mathrm{W}$	$82.6214^{\circ} \mathrm{W}$	
$53 \mathrm{ft}(16 \mathrm{~m}) \mathrm{MSL}$		

Antennas

TFD Array
Two square arrays on a NS line, eight 30 -foot TFD elements, beam steering in 5° increments NS and 15° increments EW.

16 MHz HPBW at zenith: $18^{\circ} \mathrm{NS} \times 40^{\circ} \mathrm{EW}$
20 MHz HPBW at zenith: $15^{\circ} \mathrm{NS} \times 35^{\circ} \mathrm{EW}, \mathrm{D} \approx 14 \mathrm{dBic}$
24 MHz HPBW at zenith: $12^{\circ} \mathrm{NS} \times 30^{\circ} \mathrm{EW}$
32 MHz HPBW at zenith: $8^{\circ} \mathrm{NS} \times 20^{\circ} \mathrm{EW}$
For more about the TFD Array, see: The DPS and TFD Array

Antenna Test Range

Presently conducting galactic background measurement series with $1 / 2 \lambda$ dipoles.

Receivers

Dual Polarization Spectrograph (DPS)

$24 \times 7 \times 365$ unattended operation
$16-32 \mathrm{MHz}$, simultaneous (correlated) RCP and LCP
300 channels per polarization (600 total)
Swept frequency, selectable $7.5,15,30,60 \mathrm{kHz}$ pre-detection BW
~ 6.7 sweeps/sec, integration time $=500 \mu$ s per sample
Frequency resolution $=53 \mathrm{kHz}, \Delta \mathrm{t}=150 \mathrm{~ms}$
For more about the DPS, see: The DPS and TFD Array

Receivers (cont'd)

Radio Jove Receivers

$24 \times 7 \times 365$ unattended operation
$\sim 20.1 \mathrm{MHz}$, uncorrelated RCP and LCP
7 kHz RF BW folded via direct conversion into a baseband
3.5 kHz pre-detection audio BW

Integration time $=100 \mathrm{~ms}$ per sample
For more about the Jove Receivers, See: Radio Jove Receiver Manual
Icom R8500 + 10.7 MHz Jove Receiver
7 kHz RF BW folded via direct conversion into a baseband 3.5 kHz pre-detection BW

Integration time $=100 \mathrm{~ms}$ per sample

Tunable Wideband Receiver (TWB) Mark III
Attended operation only
Tunable from 16 to $32 \mathrm{MHz}, \mathrm{RCP}$ or LCP
2 MHz IF BW direct to high speed digitizer
FFT post-processing, RBW $=4.88 \mathrm{kHz}, \Delta \mathrm{t}=205 \mu \mathrm{~s}$
For more about the TWB, see: The TWB

Icom R75 Receivers 1 \& 2

Used for live audio stream and as required for antenna test range operations.

Sensitivity

Formal sensitivity calculations and measurements have not been made. A rough estimate considering only the number of dipoles is a 20 MHz on-axis and at zenith 3σ sensitivity on the order of 100 kJy . All receivers presently in use have noise figures between 6 and 8 dB , making their internal noise of little concern given the modest losses between the TFD array and the receivers and the fact that in the upper HF band, system noise is dominated by the galactic background emission.

Timing

All radio telescope data collection systems use a PC's internal clock to apply timestamps to the data. Each PC runs a Network Time Protocol (NTP) daemon to keep its system clock within a few milliseconds of UTC. The NTP server is a GPS-ntp-pi stand-alone unit using multiple GNSS signals to provide the correct time on the local network. For more information, see: GPS-NTP Pi
For more information, see: Meinberg NTP Server and Meinberg NTP Server Monitor

Calibration

All radio telescope systems are calibrated in terms of antenna temperature using a noise source calibrated against a 5722 noise diode. An automatic calibrator runs a step calibration on all receivers, usually twice per day at ± 3 hours from Jupiter transit. The step cal runs 17 steps each separated by 3 dB . Calibration timing, step duration, and noise temperature varies as required by telescope and test range operations. For more information see: AJ4CO Automatic Calibrator

Computers

Three identical PCs are used to record data from the receivers. Each has a 2.4 GHz AMD Opteron dual-core processor, 4 GB RAM, and a 1 TB hard drive. All run Windows XP SP3. All are connected to the observatory LAN.

Internet

The observatory has internet access via a 6 Mbps DSL connection. This connection allows the Radio Sky Pipe (RSS) and Radio Sky Spectrograph (RSS) software to serve data to interested remote observers.

Power

The receivers, computers, and network hardware are fed by six 1.5 kVA battery backup units providing at least 15 minutes of power if the AC mains fail.

Operations

Several radio telescopes operate all day, every day (see "Receivers" above). Useful Jupiter observations are made any time Jupiter is within 3 hours of transit, but this is extended to around 4.5 hours when Jupiter's transit elevation is greater than 70° and Jupiter is near opposition.

Measured above natural ground (no ground screen).

30' TFD 20.1 MHz EZNEC predicted element beam pattern
Modeled above poor ground. Azimuth pattern at 45° elevation.

The AJ4CO automatic calibrator is presently modified by the addition of a HAT-4 and a HAT-3 in series at the internal noise generator's output connector. Plots below show the noise temperature and variation at the automatic calibrator front panel connectors (the calibration plane) during the calibrator's 0 dB attenuation step. The internal noise generator was measurad at $430 \mathrm{MK} \pm 0.1 \mathrm{~dB}$ on 05 Jan 2020.

TFD Array Beam Steering

N-S Offset (degrees)	E-W Offset (degrees)	Delay Cable Lengths (feet \& inches)					$\begin{gathered} \mathrm{AZ} \\ \text { (degrees) } \\ \hline \end{gathered}$	$\begin{gathered} \text { EL } \\ \text { (degrees) } \\ \hline \end{gathered}$
		A (S)/B(N)	C (S) / D (N)	E	F (W)/G (E)	H		
20 N	60 E	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	18' 3-1/2"	9'1-3/4"	78	29
20 N	45 E	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	14' 11-1/4"	7' 5-1/2"	70	43
20 N	30 E	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	10' 6-3/4"	5' 3-1/4"	58	56
20 N	15 E	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	5' 5-1/2"	2'8-3/4"	36	66
20 N	0	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	0 "	0 "	0	70
20 N	15 W	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	5' 5-1/2"	2'8-3/4"	324	66
20 N	30 W	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	10' 6-3/4"	5' 3-1/4"	302	56
20 N	45 W	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	14' 11-1/4"	7' 5-1/2"	290	43
20 N	60 W	7' 2-3/4"	14' 5-1/4"	3' 7-1/4"	18' 3-1/2"	9'1-3/4"	282	29
15 N	60 E	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	18' 3-1/2"	9'1-3/4"	81	30
15 N	45 E	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	14' 11-1/4"	7' 5-1/2"	75	44
15 N	30 E	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	10' 6-3/4"	5' 3-1/4"	65	58
15 N	15 E	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	5' 5-1/2"	2'8-3/4"	45	69
15 N	0	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	$0{ }^{\prime}$	0"	360	75
15 N	15 W	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	5' 5-1/2"	2'8-3/4"	315	69
15 N	30 W	5' 5-1/2"	10' 11-1/4"	2' 8-3/4"	10' 6-3/4"	5' 3-1/4"	295	58
15 N	45 W	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	14' 11-1/4"	7' 5-1/2"	285	44
15 N	60 W	5' 5-1/2"	10' 11-1/4"	2'8-3/4"	18' 3-1/2"	9'1-3/4"	279	30
10 N	60 E	3' 8"	7'4'	$1^{\prime} 10 "$	18' 3-1/2"	9'1-3/4"	84	30
10 N	45 E	3' 8"	$7{ }^{\prime \prime}$	1'10"	14' 11-1/4"	7' 5-1/2"	80	45
10 N	30 E	$3{ }^{\prime \prime}$	$7{ }^{7}$	1'10"	10' 6-3/4"	5' 3-1/4"	73	59
10 N	15 E	3' 8"	$7{ }^{\prime \prime}$	1'10"	5' 5-1/2"	2'8-3/4"	57	72
10 N	0	3' 8"	$7{ }^{\prime \prime}$	1'10"	0 "	0	360	80
10 N	15 W	3' 8"	$7{ }^{7}$	1'10"	5' 5-1/2"	2'8-3/4"	303	72
10 N	30 W	3' 8"	7'4'	1' 10"	10' 6-3/4"	5' 3-1/4"	287	59
10 N	45 W	3' 8"	$7{ }^{\prime \prime}$	1'10"	14' 11-1/4"	7' 5-1/2"	280	45
10 N	60 W	3' 8"	7'4'	1'10"	18' 3-1/2"	9'1-3/4"	276	30

	TFD Array Beam Steering					
Aリ4						
	$\begin{gathered} \hline \text { SIZE } \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { DATE } \\ & 01 \text { OCT } 2014 \end{aligned}$	$\begin{gathered} \text { PART NUMEER } \\ \mathrm{N} / \mathrm{A} \end{gathered}$			$\begin{gathered} \text { REV } \\ \mathbf{A} \end{gathered}$
	SCALE	NONE	$\underset{\text { drawn }}{\text { BAVE }}$ TYPINSKI	SHEET	1 OF 6	
2	1					

TFD Array Beam Steering

Time Delay Cable VoP: $\quad \mathbf{6 6 \%} \quad$ Array elements N-S baseline spacing (feet): 32
Array elements E-W baseline spacing (feet): 32

N-S Offset (degrees)	E-W Offset (degrees)	Delay Cable Lengths (feet \& inches)					AZ (degrees)	$\begin{gathered} \text { EL } \\ \text { (degrees) } \\ \hline \end{gathered}$
		A (S)/B(N)	C (S) / D (N)	E	F (W)/G (E)	H		
55 S	60 E	17' 3-1/2"	34' 7-1/4"	8'7-3/4"	18' 3-1/2"	9' 1-3/4"	130	24
55 S	45 E	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	14' 11-1/4"	7' 5-1/2"	145	30
55 S	30 E	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	10' 6-3/4"	5' 3-1/4"	158	33
55 S	15 E	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	5' 5-1/2"	2' 8-3/4"	169	35
55 S	0	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	0 "	0	180	35
55 S	15 W	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	5' 5-1/2"	2' 8-3/4"	191	35
55 S	30 W	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	10' 6-3/4"	5' 3-1/4"	202	33
55 S	45 W	17' 3-1/2"	34' 7-1/4"	8' 7-3/4"	14' 11-1/4"	7' 5-1/2"	215	30
55 S	60 W	17' 3-1/2"	34' $7-1 / 4{ }^{\prime \prime}$	8' 7-3/4"	18' 3-1/2"	9' 1-3/4"	230	24
60 S	60 E	18' 3-1/2"	36'7"	9' 1-3/4"	18' 3-1/2"	9' 1-3/4"	135	22
60 S	45 E	18' 3-1/2"	36' 7"	9' 1-3/4"	14' 11-1/4"	7' 5-1/2"	150	27
60 S	30 E	18' 3-1/2"	36'7"	9' 1-3/4"	10' 6-3/4"	5' 3-1/4"	162	29
60 S	15 E	18' 3-1/2"	36' 7 "	9' 1-3/4"	5' 5-1/2"	2' 8-3/4"	171	30
60 S	0	18' 3-1/2"	36' 7"	9' 1-3/4"	$0{ }^{1}$	0	180	30
60 S	15 W	18' 3-1/2"	36'7"	9'1-3/4"	5' 5-1/2"	2' 8-3/4"	189	30
60 S	30 W	18' 3-1/2"	36' 7 "	9' 1-3/4"	10' 6-3/4"	5' 3-1/4"	198	29
60 S	45 W	18' 3-1/2"	36' 7"	9' 1-3/4"	14' 11-1/4"	7' 5-1/2"	210	27
60 S	60 W	18' 3-1/2"	36' 7 "	9' 1-3/4"	18' 3-1/2"	9' 1-3/4"	225	22

 $\mathrm{HI}, \mathrm{GH}, \mathrm{GS}, \mathrm{HM}, \mathrm{HA}, \mathrm{HG}, \mathrm{HZ}, \mathrm{LA}-\mathrm{LN}, \mathrm{LY}, \mathrm{OE}, \mathrm{OH} 0,0 \mathrm{OH}, \mathrm{OK}-0 \mathrm{~L}, \mathrm{OH}$, $0 \mathrm{~N}-0 \mathrm{~T}, 0 \mathrm{U}-0 \mathrm{H}, \mathrm{OZ}, 0 \mathrm{Y}, \mathrm{PA}-\mathrm{PI}, S \mathrm{SA}-\mathrm{SH}, \mathrm{SN}-\mathrm{SR}, \mathrm{TA}-\mathrm{TC}, \mathrm{UA}-\mathrm{UI} 1,3,4$,

$1 \mathrm{~A}, 3 \mathrm{~A}, 3 \mathrm{~V}, 40,4 \mathrm{U}$ _ITU, $4 \mathrm{X}, 42,5 \mathrm{~A}, 5 \mathrm{~B}, \mathrm{C} 4, \mathrm{P} 3$,
$70,7 \mathrm{~T}-7 \mathrm{Y}, 9 \mathrm{~A}, 9 \mathrm{H}, \mathrm{C} 3, \mathrm{CY} 0, \mathrm{E} 4, \mathrm{E} 7, \mathrm{EA}-\mathrm{EH}, \mathrm{EA}-\mathrm{EH} 6$, $70,7 \mathrm{~T}-7 \mathrm{Y}, 9 \mathrm{~A}, 9 \mathrm{OH}, \mathrm{C} 3, \mathrm{CY} 0, \mathrm{E} 4, \mathrm{E} 7, \mathrm{EA}-\mathrm{EH}, \mathrm{ERG} \mathrm{EHG}$,
$\mathrm{F}, \mathrm{GJ}, \mathrm{GH}, \mathrm{HJ}, \mathrm{GU}, \mathrm{GP}, \mathrm{HU}, \mathrm{GH}, \mathrm{GC}, \mathrm{HH}, \mathrm{HB}, \mathrm{HB}$,
 8

 165 $\stackrel{8}{\infty}$ 195

$$
2
$$

EA9-EH9,ETクJ2rS7,
75


```
10
```


$$
45
$$

Find your
\qquad
Find the magnetic declination
at your location

Sites of Interest
Cosmos Plus!
Live Meteors
Satellite tracking
Radio Astronomy

Copyright ©2020 Magnetic-Declination.com
Magnetic declination is calculated using the World Magnetic Model WMM2020.
Questions? webmaster@magnetic-declination.com
...If the compass at your place is pointing clockwise with respect to the True North, declination is positive or EAST
If the compass at your place is pointing counter-clockwise with respect to the True North, declination is negative or WEST

Positive declination (EAST)

